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In the present work, we show that the autocorrelation function of the capillary-wave displacement is ex-
pressed by the sum of the ordinary oscillator and the bulk shear-mode terms. The former is expressed by a
simple damped oscillator form or a sum of exponentially damping functions depending on the extent of
damping. The latter is also written by superposition of exponentially damping modes, and an analytically exact
formulation is obtained. We performed surface dynamic light-scattering experiment for the surface of an ionic
liquid, 1-butyl- 3-methylimidazolium bis��trifluoromethyl�sulfonyl�imide, and compared the experimental au-
tocorrelation function with the theoretical one. We observed for the first time the bulk shear-mode contribution,
and confirmed that the experimental data is well explained by the theoretical autocorrelation function.
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I. INTRODUCTION

Surface dynamic light scattering �SDLS� is a powerful
nonperturbative technique to study thermally excited capil-
lary waves �CW� on liquid surfaces �1�. Since the evolution
of CW is governed by surface tension and by surface and
bulk viscoelasticity, precise treatment of SDLS data allows
the determination of these valuables.

The basic understanding of thermally excited CW is well
established. The CW modes obey the linearized Navier-
Stokes equation �2,3�, and its actual thermal population is
calculated by the fluctuation-dissipation theorem �4�. In the
two extreme cases of low and high damping, the CW spec-
trum consists simply of Lorentzian lines. However, such a
simple result no longer holds in intermediate damping con-
ditions. The origin of the spectral shape modification from
Lorentzian is physically interpreted as resulting from a cou-
pling between the surface motion and the motion that it in-
duces in the fluid underneath �5�. In intermediate damping
conditions, it is important to take the non-Lorentzian aspect
into account for the purpose of obtaining precise liquid pa-
rameters such as surface tension and viscosity. To our knowl-
edge, however, there is no experimental work which takes
the influence of the bulk mode in an explicit manner sepa-
rately from the surface oscillator mode.

One of the most important classes of liquids which satisfy
the intermediate damping condition is ionic liquids �ILs�.
Recently, ILs have received considerable interests for various
applications such as solvents in chemical synthesis �6� and
electrolytes in batteries �7� and solar cells �8�. ILs are highly
viscous liquids at room temperature, but its viscosity de-
creases considerably when the temperature is increased. It is
found recently that the CW spectra on the surface of ILs
show the transition from oscillating to overdamped behavior
�9–11�. Near the transition region, the non-Lorentzian aspect

dominates the CW spectra, and its precise calculation is cru-
cial in order to get liquid parameters such as surface tension
and viscosity.

In a previous paper �9�, we analyzed the SDLS data of an
IL, 1-butyl- 3-methylimidazolium bis��trifluoromethyl�sulfo-
nyl�imide �hereafter abbreviated as �bmim��TFSI�� on the ba-
sis of the frequency-domain analysis using the strict theoret-
ical expression for the power spectrum �Eq. �5� shown
below�. This method gives precise liquid parameters. How-
ever, in this method, the physical interpretation of the data is
not clear because it is difficult to decompose the experimen-
tal spectra into contributions of various modes. On the other
hand, we analyzed the SDLS data of various ILs using the
time-domain analysis in �11�, and found that there exist slow
and fast damping modes in the overdamped regime near the
critical damping condition. In the time-domain analysis, it is
easy to decompose the experimental data into modes and to
obtain various parameters characterizing these modes, such
as the frequency and the damping rate. In �11�, we obtained
dispersion relations for the slow and fast damping modes for
the first time.

In the present work, we study the shape of the time-
domain SDLS data in more detail. We show that the autocor-
relation function of the CW displacement can be separated
into ordinary oscillator and bulk shear-mode terms. The
former can be expressed by a simple damped oscillator form
or a sum of exponentially damping functions depending on
the extent of damping. The latter is also written by a super-
position of exponentially damping modes, and an analyti-
cally exact formula is obtained. The bulk shear-mode term
was ignored in the previous paper �11� because it is negligi-
bly small in the overdamped region near the critical damp-
ing. However, it becomes important in the damped oscillator
side of the transition region as shown below.

This paper is organized as follows. In Sec. II, we review
the theoretical background of the general description of the
CW, and show that the autocorrelation function is separated
into the ordinary oscillator and the bulk shear-mode terms. In*ohmasa@cc.it-hiroshima.ac.jp
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Sec. III, we compare the theoretical expression with the
SDLS experimental data obtained on the surface of an IL,
�bmim��TFSI�. Conclusions are given in Sec. IV.

II. THEORETICAL BACKGROUND

A. General description of capillary wave

We define that the liquid is filling the half space z�0 and
its surface extends in the xy plane. Let ��x ,y , t� denote the
vertical displacement of the surface element at time t, and
v�x ,y ,z , t� denote the velocity field in the liquid. They are
related to each other as

vz�z = 0� �
��

�t
.

We consider surface waves of wave vector q propagating in
the x direction,

v = v0�z�exp�i�qx − �t�� .

In the case of incompressible Newtonian liquid, the motion
of the liquid is governed by the linearized Navier-Stokes
equations,

�
�v
�t

= ��2v − �p �1�

and

div v = 0, �2�

where � is the density, � is the viscosity, and p is the pres-
sure.

The solution of Eqs. �1� and �2� which satisfies the con-
ditions

v�z → − �� → 0, p�z → − �� → 0

is given by �2,3�

p = �i��/q�Aeqzei�qx−�t�,

vx = i�Aeqz +
m

q
Bemz�ei�qx−�t�,

vy = 0,

vz = �Aeqz + Bemz�ei�qx−�t�, �3�

where A and B are constants, and m=�q2− i�� /� with
Re�m��0.

In addition, the motion must satisfy boundary conditions
that express the continuity of the normal and tangential
stresses at the surface,

�� �vx

�z
+

�vz

�x
� = 0,

2�
�vz

�z
− p = 	

�2�

�x2 ,

where 	 is the surface tension. From these conditions, the
dispersion relation is obtained as �2,3�
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FIG. 1. Theoretical dispersion relation of capillary waves. 
̃0

and �̃0 are the dimensionless angular frequency and the damping

rate in the damped oscillation region �ỹ�0.145�, respectively. �̃slow

and �̃fast are the dimensionless damping rates of the slow and the
fast modes in the overdamped region �ỹ�0.145�. Here, ỹ is a di-
mensionless parameter defined by the Eq. �7�. The shaded area in-
dicates the distribution of dimensionless damping rates �̃ of bulk
shear modes, which contribute to integral �19�.
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FIG. 2. Integral paths C0, C1,
and C2 for Fourier transformation
�12� in the �a� damped oscillator
region and the �b� overdamped
region.
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D�q,�� = �2�q2/��2m/q − �i� − 2�q2/��2 − 	q3/� = 0.

�4�

The power spectrum PT�q ,�� of thermally excited capillary
waves of the liquid surface is given by the fluctuation-
dissipation theorem �4�,

PT�q,�� = −
2kBTq

��
Im

1

D�q,��
. �5�

It is known that this spectrum deviates from Lorentzian in
the intermediate damping region �5�.

Hereafter, we use the following dimensionless variables
for simplicity:

�̃ =
�

2�q2� , �6�

ỹ =
�	

4�2q
, �7�

t̃ =
2�q2

�
t , �8�

D̃�ỹ,�̃� = ��/2�q2�2D�q,�� = �1 − 2i�̃�1/2 − �1 − i�̃�2 − ỹ .

�9�

The variables with tilde denote the dimensionless counter-
parts of the dimensioned variables. Using these dimension-
less variables, Eq. �5� can be rewritten as

PT�q,�� = − � kBT�2

4�3q5� 1

�̃
Im

1

D̃�ỹ,�̃�
.

In general, the dispersion equation

D̃�ỹ,�̃� = 0 �10�

has two complex roots �̃0 and �̃1. When �i� ỹ�0.145
�damped oscillation region�, the two roots have the form


̃0− i�̃0. Here, 
̃0 and �̃0 are the dimensionless counter-
parts of the angular frequency 
0 and the damping rate �0 of
the CW, respectively. When �ii� ỹ�0.145 �overdamped re-

gion�, the roots have pure imaginary values −i�̃slow and

−i�̃fast ��̃slow��̃fast�. �̃slow and �̃fast are the dimensionless
damping rates of slow and fast CW modes. Analytic forms of
these roots have been given by Byrne and Earnshaw �12�.
Figure 1 shows the ỹ dependence of 
̃0, �̃0, �̃slow, and �̃fast.

When ỹ is decreased, 
̃0 decreases and vanishes at the criti-
cal value ỹ=0.145, where critical damping takes place. When

ỹ is decreased below 0.145, �̃0 is bifurcated into �̃slow and

�̃fast branches.
We define the autocorrelation function F�q , t�

= 	��q , t���q ,0�
 of Fourier components ��q , t� of the vertical
displacement ��x ,y , t�. It is calculated by Fourier transform-
ing PT�q ,�� as follows:

F�q,t� = �
−�

� d�

2�
PT�q,��e−i�t

= − F0ỹ�
−�

� d�̃

�

e−i�̃t̃

�̃
Im

1

D̃�ỹ,�̃�

= − F0ỹ�
−�

�

d�̃
e−i�̃t̃

2�i�̃� 1

D̃�ỹ,�̃�
−

1

D̃�ỹ,�̃��
� ,

�11�

where

F0 = F�q,0� = 	��q�t��2
 =
kBT

	q2 .

is the total amplitude of the CW with wave number q.
When t̃�0, the integral path should be closed in the

lower half plane as indicated by the path C in Figs. 2�a� and
2�b�. This integral path is decomposed into three contribu-
tions C0, C1, and C2. C0 and C1 are the integrals around the
two poles �̃0 and �̃1, and C2 is around the branch cut which
extends along the negative imaginary �̃ axis from −1 /2 to

−�. Because 1 / D̃� is analytic in the lower half plane, only

the 1 / D̃ term contributes to the integral,

F�q,t� = − F0ỹ��
C0

+ �
C1

+ �
C2

�d�̃
e−i�̃t̃

2�i�̃D̃�ỹ,�̃�
�12�

B. Ordinary oscillator term

The integrals around the paths C0 and C1 correspond to
ordinary oscillator terms. These integrals give different func-
tional forms depending on the value of ỹ.

�i� In the damped oscillation region �ỹ�0.145�, the inte-
grals around C0 and C1 give an oscillatory function with the

dimensionless frequency 
̃0 and the damping rate �̃0. We
denote this term by Fosc�q , t�,

Fosc�q,t� = − F0ỹ��
C0

+ �
C1

�d�̃
e−i�̃t̃

2�i�̃D̃�ỹ,�̃�

= lim
�̃→
̃0−i�̃0

F0ỹe−i�̃t̃

�̃D̃�ỹ,�̃�
��̃ − 
̃0 + i�̃0�

+ lim
�̃→−
̃0−i�̃0

F0ỹe−i�̃t̃

�̃D̃�ỹ,�̃�
��̃ + 
̃0 + i�̃0�

=  F0ỹe−i�̃t̃

�̃�dD̃/d�̃�


�̃=
̃0−i�̃0

+  F0ỹe−i�̃t̃

�̃�dD̃/d�̃�


�̃=−
̃0−i�̃0

=
A

2
e−i�e�−i
̃0−�̃0�t̃ + �c.c.� = Ae−�̃0t̃ cos�
̃0t̃ + �� ,

�13�

where
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A =  2F0ỹ

�̃�dD̃/d�̃�


�̃=
̃0−i�̃0

=  2F0ỹ

i�̃�2�1 − i�̃� − 1
�1−2i�̃��̃=
̃0−i�̃0

, �14�

� = � arg� 1

�̃�dD̃/d�̃�
�

�̃=
̃0−i�̃0

= � arg� 1

i�̃�2�1 − i�̃� − 1
�1−2i�̃���̃=
̃0−i�̃0

�15�

are the amplitude and the phase of the oscillation term, re-
spectively.

�ii� In the over damped region �ỹ�0.145�, the integrals
around C0 and C1 give exponentially damping functions with

dimensionless damping rates �̃slow and �̃fast, respectively. We
denote these functions by Fslow�q , t� and Ffast�q , t�,

Fslow�q,t� + Ffast�q,t� = − F0ỹ��
C0

+ �
C1

�d�̃
e−i�̃t̃

2�i�̃D̃
=  F0ỹe−i�̃t̃

�̃�dD̃/d�̃�


�̃=−i�̃slow

+  F0ỹe−i�̃t̃

�̃�dD̃/d�̃�


�̃=−i�̃fast

= Be−�̃slowt̃ + Ce−�̃fastt̃,

�16�

where

B =  F0ỹ

�̃�dD̃/d�̃�


�̃=−i�̃slow

=
F0ỹ

�̃slow�2�1 − �̃slow� − 1
�1−2�̃slow

� , �17�

C =  F0ỹ

�̃�dD̃/d�̃�


�̃=−i�̃fast

=
F0ỹ

�̃fast�2�1 − �̃fast� − 1
�1−2�̃fast

� �18�

are the amplitudes of the slow and the fast damping modes, respectively.
The ỹ dependence of the parameters A /F0 and � in the damped oscillator regime and B /F0 and C /F0 in the overdamped

regime are depicted in Fig. 3. The amplitude of the fast mode C gives negative contribution in the overdamped region.
Presence of the fast mode near the critical damping is confirmed experimentally by Hoshino et al. �11�. When ỹ is approached
to the critical value 0.145, the normalized amplitudes A /F0, B /F0, and �C� /F0 increase sharply. However, the values of the
ordinary oscillator terms at t=0, Fosc�q ,0� /F0=A cos � /F0 and �Fslow�q ,0�+Ffast�q ,0�� /F0= �B+C� /F0, remain nearly unity
as indicated by the dotted line.
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−(Γslow/Γfast)(B/F0) Fbulk(q,0)/F0
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y

~
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FIG. 3. Various parameters describing the shape of the correla-
tion function F�q , t� in the damped oscillator regime �ỹ�0.145� and
the overdamped regime �ỹ�0.145�. The thick solid lines indicate
normalized amplitudes A /F0, B /F0, C /F0, and Fbulk�q ,0� /F0 of
Fosc, Fslow, Ffast, and Fbulk, respectively. The thin solid line indicates
phase shift � of Fosc, and the dotted line is the intensity of the
ordinary oscillator terms at t=0, A cos � /F0 for ỹ�0.145 and �B
+C� /F0 for ỹ�0.145. The dashed lines represent
−��slow /�fast��B /F0� and −tan−1��0 /�0�, which are expected to co-
incide with C /F0 and �, respectively, in the approximation ignoring
the bulk shear mode.
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FIG. 4. A schematic drawing of a bulk shear mode with a wave
vector p= �q ,0 ,m�� and a velocity vector v.
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C. Bulk shear-mode term

Next, we focus our attention on the integral along the path C2, which corresponds to the bulk shear mode as seen below. We

denote the term by Fbulk�q , t�. It comes from the discontinuity of D̃�ỹ , �̃� across the branch cut,

Fbulk�q,t� = − F0ỹ�
C2

d�̃
e−i�̃t̃

2�i�̃D̃

= − F0ỹ�
1/2

� d�̃e−�̃t̃

2�i�̃

�� 1

D̃�ỹ,− i�̃ + ��
−

1

D̃�ỹ,− i�̃ − ��
�

= − F0ỹ�
1/2

�

d�̃
e−�̃t̃

2�i�̃� 1

− i�2�̃ − 1 − �1 − �̃�2 − ỹ
−

1

i�2�̃ − 1 − �1 − �̃�2 − ỹ
�

= −
F0ỹ

�
�

1/2

�

d�̃
e−�̃t̃�2�̃ − 1

�̃���1 − �̃�2 + ỹ�2 + �2�̃ − 1��

� − �
1/2

�

d�̃g��̃�e−�̃t̃. �19�

This form has already been given by Nelkin �13�. However,
he wrote about this term only briefly, and, to our knowledge,
this formula has never been used for the analysis of experi-
mental data. Therefore, it is worth examining the formula
containing this term more closely. From the experimental
point of view, it is important to study the actual time depen-
dence of the term, and to examine how the intensity of the
term depends on the liquid parameters.

It should be noted that Fbulk is a superposition of expo-
nential type damping modes e−�̃t̃ with a weight −g��̃�. The
shaded area in Fig. 1 ��̃�1 /2� indicates the distribution of
the dimensionless damping rates �̃, which contribute to inte-
gral �19�. This exponential damping corresponds to the pure
imaginary frequency �̃=−i�̃. Substituting this imaginary fre-
quency in Eq. �3�, it is noticed that m=q�1−2i�̃=q�1−2�̃
= im� becomes purely imaginary for �̃�1 /2. The velocity v
behaves as v= �vx ,vy ,vz�� �−m� ,0 ,q�exp�i�qx+m�z�−�t�
when �z��q−1. This mode can be interpreted as a bulk shear
mode with a wave vector p= �q ,0 ,m��, which is illustrated
schematically in Fig. 4. The velocity vector v is perpendicu-
lar to the wave vector p, and the dimensioned damping rate
�= �2�q2 /���̃= �� /���q2+m�2� coincides precisely with the

damping rate �� /��p2 of the bulk shear mode with wave
number p.

As shown in Appendix, the integration in Eq. �19� can be
executed analytically,

Fbulk�q,t� = − F0ỹ�
i=0

3
ai

�̃i
�erfc�� t̃

2
�

− �1 − 2�̃ie
−�̃it̃ erfc�� t̃

2
�1 − 2�̃i��� .

�20�

Here, erfc�x� is the Gauss’s error function

erfc�x� =
2

��
�

x

�

e−t2dt ,

and �̃i and ai �i=0�3� are defined by Eqs. �A1a�–�A1c� and
�A3�.

The total autocorrelation function F�q , t� of CW is ex-
pressed by the sum of the ordinary oscillator terms and the
bulk shear-mode term,

F�q,t� = �Fosc�q,t� + Fbulk�q,t� = Ae−�0t cos�
0t + �� + Fbulk�q,t� , �ỹ � 0.145�
Fslow�q,t� + Ffast�q,t� + Fbulk�q,t� = Be−�slowt + Ce−�fastt + Fbulk�q,t� , �ỹ � 0.145� .

� �21�
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The parameters A, �, B, and C are given in Eqs. �14�, �15�,
�17�, and �18�, respectively, and the bulk shear term
Fbulk�q , t� is calculated by Eq. �20�.

Figure 5 shows the normalized correlation functions
F�q , t� /F0 at �a� ỹ=10 and �b� ỹ=1 �damped oscillator re-
gime� and �c� ỹ=0.145 �critical damping regime� and at �d�
ỹ=0.1 �overdamped regime�. The dashed, dotted, chain, and
thin solid lines represent the contributions of Fosc�q , t� /F0,
Fslow�q , t� /F0, Ffast�q , t� /F0, and Fbulk�q , t� /F0, respectively.
Fbulk�q , t� appears in small t̃ region and gives negative con-
tribution to F�q , t�. In Figs. 5�a�, 5�c�, and 5�d�, it is found
that �Fbulk� is quite small and negligible. However, at ỹ=1
�Fig. 5�b��, �Fbulk� becomes large, and relatively large devia-
tion of F�q , t� from Fosc�q , t� is observed below t̃�1.

ỹ dependence of the contribution of the bulk shear mode
at t=0, Fbulk�q ,0� /F0, is shown in Fig. 3. In a wide range of
ỹ, �Fbulk�q ,0� /F0� is negligibly small. However, it shows a
broad maximum around ỹ�1, where the contribution of
�Fbulk�q ,0�� becomes �20% of F0, and Fbulk cannot be ig-
nored in this area.

It may be interesting to study how the bulk shear mode
affects the time derivative of F�q , t� in the small t region.
Since a time-correlation function such as F�q , t� is indepen-
dent of the choice of time origin and invariant under time
translation, the following equation is derived �14�:

 �F

�t


t=0
= 0. �22�

Substituting the Eq. �21� into Eq. �22�, one obtains

− A�
0 sin � + �0 cos �� + dFbulk/dt = 0 �ỹ � 0.145� ,

− B�slow − C�fast + dFbulk/dt = 0 �ỹ � 0.145� .

When the bulk shear mode is ignored, the following relations
are obtained:

� = − tan−1��0/�0� �ỹ � 0.145� ,

C = − ��slow/�fast�B �ỹ � 0.145� .

The dashed lines in Fig. 3 represent −tan−1��0 /�0� and
−��slow /�fast��B /F0�, which are expected to coincide with �
and C /F0, respectively, in the approximation ignoring the
bulk shear mode. In the damped oscillation region, it is
found that � deviates significantly from −tan−1��0 /�0�
around ỹ�1, where contribution of Fbulk becomes important.
Near the critical damping �ỹ�0.145�, C /F0 nearly coincides
with −��slow /�fast��B /F0� because Fbulk�q ,0� is small in this
region compared to B and C. This is the reason why the
experimental overdamped CW data near the critical damping
can well be explained without taking into account the bulk
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FIG. 5. The thick solid lines
indicate the normalized correla-
tion functions F�q , t� /F0 at �a� ỹ
=10 and �b� ỹ=1 �damped oscilla-
tor regime� and �c� ỹ=0.145 �criti-
cal damping regime� and at �d� ỹ
=0.1 �overdamped regime�. The
dashed, dotted, chain, and thin
solid lines represent the contribu-
tions of Fosc�q , t� /F0, Fslow�q , t� /
F0, Ffast�q , t� /F0 and Fbulk�q , t� /
F0, respectively.
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shear-mode contribution as shown in the previous paper �11�.
In the region ỹ�0.1, the deviation gets larger again because
the amplitude of the fast mode C becomes small and
Fbulk�q ,0� cannot be ignored compared to C.

III. COMPARISON WITH EXPERIMENTAL DATA

A. Experimental procedure

We performed SDLS measurements on the surface of an
IL, �bmim��TFSI�. A high-purity �bmim��TFSI� sample was
purchased from Kanto Chemical Co., Inc. The liquid sample
was enclosed in a quartz cell with diameter of 50 mm. The
cell was evacuated using a rotary pump and a liquid nitrogen
trap, and the measurements were performed under vacuum
conditions.

We used a He-Ne laser �1.5mW, wavelength �
=632.8 nm� as a light source. The light scattered by the
capillary waves was detected by a photomultiplier through a
pinhole �0.5mm in diameter� and an optical fiber.

Together with the scattering from the liquid surface, the
light scattered from the surfaces of optical elements is opti-
cally mixed at the detector. The latter acts as the reference
light or the local oscillator to fulfill the necessary conditions
for optical heterodyning. From the output signal of the de-
tector, I�q , t�, the time-autocorrelation function G�q , t�
= 	I�q , t�I�q ,0�
 / 	I
2 was calculated with a multiple-tau digi-
tal autocorrelator ALV-610/160. In general, the autocorrela-
tion function G�q , t� can be expressed as a combination of
heterodyne and homodyne terms �15�. The heterodyne com-
ponent of G�q , t�−1 is proportional to the correlation func-
tion of the CW, F�q , t�. In the present case, the heterodyne
term is dominant because the reference signal is much more
intense compared to the scattering from the CW. In the fol-
lowing analysis, we ignore the homodyne contribution.

We deduced the surface tension and the viscosity from the
SDLS data by using the curve-fitting method described in a
pervious paper �9�. In this method, the experimentally ob-
tained power spectrum is fitted by the strict theoretical ex-
pression of power spectrum �5�. In this calculation, we also
adopted a global fitting procedure. Namely, many spectra
taken at various wave numbers at the same temperature con-
dition were fitted simultaneously while sharing the same fit-
ting parameters between data sets.

Detail of the experimental procedure has been given in
the pervious paper �9�.

B. Results and discussion

The closed circles in Fig. 6 indicate a representative result
of the observed autocorrelation function G�q , t�−1 at T
=50 °C and q=416 cm−1. At this temperature, the surface
tension 	 and the viscosity �, which are obtained by the
fitting method described in the previous subsection, are
33.20.4 mN /m and 20.40.6 mPa·s, respectively, and
the literature value of the density � is 1.42 g /cm3 �16�. From
these parameters, ỹ for the data of Fig. 6 is calculated to be
0.680.04, where large contribution of the bulk shear mode
is expected.

In order to detect the difference between the observed
correlation function and the simple damped oscillator, we
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[bmim][TFSI] 50oC 416cm−1
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FIG. 6. The closed circles indicate a representative result of the
observed autocorrelation function G�q , t�−1 at T=50 °C and q
=416 cm−1 for �bmim��TFSI�. The solid line is the fitting curve
using a simple damped oscillation function �Eq. �23��, and the dot-
ted line is the base line. The fitting area is indicated by the arrow.
The open circles are the difference between the observed data and
the fitting curve, corresponding to the bulk shear mode.
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FIG. 7. �Color online� The closed circles indicate the observed
autocorrelation functions G�q , t�−1 at T=50 °C and at various
wave numbers for �bmim��TFSI�. The thick solid lines are the full
theoretical correlation functions �Eq. �25��. The dashed and thin
solid lines are the contributions of the ordinary damped oscillator
term G0Fosc

� and the bulk shear term G0Fbulk
� , respectively. The dot-

ted lines are the base lines. The open circles are the difference
between the observed data and G0Fosc

� term, corresponding to the
bulk shear term.
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first performed curve-fitting analysis by a simple damped
oscillator form

Gosc�q,t� − 1 = G0e−�0t cos�
0t + �� + �base line� .

�23�

Here, G0 is the intensity factor, and the base line term cor-
responds to small low frequency fluctuations of the liquid
surface induced by the external vibrations. In this calcula-
tion, the fitting area is restricted to t�0.06 ms, as indicated
by the arrow in Fig. 6. In this fitting area, the contribution of
the bulk shear mode is expected to be negligible. The solid
line is the fitting curve. The fitting curve and the experimen-
tal data points agree well in the fitting area. The obtained
angular frequency 
0=25 ms−1 and the damping rate �0
=18 ms−1 are in good agreement with those calculated from
the theoretical dispersion relation, 
0=25.40.6 ms−1 and
�0=18.90.3 ms−1. The phase shift �=−0.3 obtained from
the fitting is also close to the theoretical prediction �the thin
solid line in Fig. 3�, −0.350.01. On the other hand, it is
larger than the prediction of the approximate theory, which
ignores the bulk shear-mode contribution �the dashed line in
Fig. 3�, ��−tan−1��0 /
0�=−0.62. This result implies the
presence of the bulk shear mode.

In the short-time region below the fitting area, it is ob-
served that the fitting curve deviates upward compared to the
experimental data. The open circles are the difference be-
tween the observed data and the fitting curve. Their overall
shape is very close to that predicted theoretically for Fbulk as
shown in Fig. 5�b�, and it is concluded that they corresponds
to the bulk shear-mode term. To our knowledge, this is the
first direct observation of the bulk shear-mode contribution
to the CW autocorrelation function.

On the other hand, if one performs curve fitting using the
data in the whole time range, the fitting parameter 
0 devi-
ates significantly from the theoretical dispersion relation. For
example, in the case of Fig. 6, 
0=28 ms−1 is obtained from
the fitting in the whole time range, and it is different from the
theoretical value of 25.40.6 ms−1. This result means that
the curve fitting ignoring the bulk shear-mode contribution
gives biased values for 
0. Therefore, the incorporation of
the bulk shear term is crucial for the purpose of obtaining the
unbiased values for 
0.

Next, we calculated full theoretical correlation function
�Eq. �21�� and compared it with the experimental data. In this
calculation, we used 	 and � obtained by the frequency-
domain fitting method described in the previous subsection,
and we also used the literature values for � �16�. We took
into account the instrumental q-resolution function with the
standard deviation ��40 cm−1,

��q,Q� =
1

���
exp�− �Q − q�2/�2� . �24�

Then G�q , t� is written in the form

G�q,t� − 1 =� dQ��q,Q�G0�Fosc�Q,t� + Fbulk�Q,t��

+ �base line�

= G0�Fosc
� �q,t� + Fbulk

� �q,t�� + �base line� ,

�25�

where Fosc
� and Fbulk

� correspond to Fosc and Fbulk broadened
by ��q ,Q�, respectively, and G0 is the intensity factor. We
used the following approximation for Fosc

� and Fbulk
� :

Fosc
� �q,t� =� dQ��q,Q�Fosc�Q,t�

� � dQ��q,Q��A + A��Q − q��exp�− ��0 + �0��Q − q�t��cos��
0 + 
0��Q − q��t + � + ���Q − q��

= exp�− �0t −
�2

4
��
0�t + ���2 − ��0�t�

2����A −
�2

2
A��0�t�cos�
0t + � −

�2

2
�0�t�
0�t + ����

−
�2

2
A��
0�t + ���sin�
0t + � −

�2

2
�0�t�
0�t + ����� , �26�

Fbulk
� �q,t� =� dQ��q,Q�Fbulk�Q,t�

� Fbulk�q,t� +
�2

4
Fbulk� �q,t� . �27�

Here, the primes indicate partial differentiation with respect

to q. This correction becomes important for the small q re-
gion below 400 cm−1.

Figure 7 shows the results. The observed data is well ex-
plained by the sum of G0Fosc

� and G0Fbulk
� . It should be noted

that we used no adjustable parameters except for the inten-
sity factor G0 and the base line.

The open circles indicate the difference between the ob-
served data and G0Fosc

� . They are well explained by G0Fbulk
�
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FIG. 8. The wave number q dependence of the frequency 
0 �circles�, the damping rate �0 �squares�, and the phase shift � �triangles�
for �bmim��TFSI� at �a� 50°C, �b� 60 °C, �c� 70 °C, and �d� 80 °C. The solid symbols are calculated using the full theoretical correlation
function �Eq. �25�–�27��, and the open symbols are obtained from the simple damped oscillator fitting �Eq. �23��. The solid lines are the
theoretical dispersion curves, and the dashed lines are the fitting curves to the open symbols using Eq. �4�.
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�the thin solid lines� down to t�3 �s. This result indicates
that the assumption of incompressible Newtonian liquid is
well satisfied for �bmim��TFSI� in the observed time region.

In the previous works �9,11�, we obtained the dispersion
curves of CW on the surface of �bmim��TFSI� only in the
low- and high-temperature regions where the Fbulk term is
negligible. Now, we are in the position where we can obtain
the dispersion curves even in the medium temperature region
by using the precise formula for the CW correlation function.
Figure 8 shows the q dependence of the frequency 
0
�circles�, the damping rate �0 �squares�, and the phase shift �
�triangles� for �bmim��TFSI� at �a� 50 °C, �b� 60 °C, �c�
70 °C, and �d� 80 °C. The data used in this calculation are
the same as used in the previous paper �9�. The solid symbols
are those calculated using the full theoretical correlation
function �Eq. �25�–�27��. In this calculation, we used 	 for
each q as free parameters and � is fixed to the values ob-
tained from the method described in the previous subsection.
� is also fixed to the literature values �16�. Then 
0, �0, and
� were calculated for each data points from these liquid
parameters. They coincide well with the theoretical disper-
sion curves indicated by the solid lines. On the other hand,
the open symbols are 
0, �0, and � calculated from the
simple damped oscillator fitting �Eq. �23�� ignoring the Fbulk
term. Unlike the curve-fitting analysis shown in Fig. 6, we
used all the data in the whole time range in this calculation.
As shown in Fig. 8, this calculation gives larger 
0 and
smaller �0 than the theoretical curves. It is also found that
the phase shift � deviate significantly from the theoretical
curves. When the temperature is increased above 70 °C
�Figs. 8�c� and 8�d��, these discrepancies become smaller
�17� because ỹ becomes larger than unity in the q region of
the measurement and contribution of the Fbulk term becomes
small. This increase of ỹ is mainly due to the strong decrease
in � with temperature.

In order to demonstrate the difference between these two
sets of dispersion curves, we compared the surface tension 	
calculated from these 
0 and �0 by curve-fitting method us-
ing Eq. �4�. In Fig. 8, the fitting curves to the open symbols
are indicated by the dashed lines. Figure 9 shows the ob-
tained 	 at various temperatures. The solid and the open
circles in Fig. 9 correspond to the solid and the open symbols
in Fig. 8, respectively. In this calculation, � and � are fixed
as in the case of the calculation of Fig. 8. The crosses in Fig.
9 are 	 calculated by the frequency-domain global fitting
method �9�, and the solid line is the linear fit to them. The
solid circles coincide well with the crosses, while the open
circles show deviation around 40�50 °C, where the contri-
bution of the bulk shear mode becomes important. It is ex-
pected that more accurate values of 	 and � will be obtained
if one uses not only 
0 and �0 but the other information
contained in the time-domain data, such as the phase shift �
and the shape parameters for Fbulk. In addition, the global
fitting method in the time-domain analysis will be useful for
the accurate estimate of the liquid parameters. The efficiency
of the global fitting method in the frequency-domain analysis
has been proven in the previous paper �9�.

An intriguing open question is to what extent the CWs on
ILs can be explained by the assumption of incompressible
Newtonian liquid. Although no significant deviation from

Newtonian fluids is observed in this work, non-Newtonian
behavior is evidenced for bulk ILs with long alkyl chains by
ultrasonic spectroscopy �18�. At such high frequencies �
�10 MHz� and at low temperatures, CWs on ILs would
exhibit non-Newtonian behavior.

We are now planning to extend the present method to the
non-Newtonian fluids described by, for example, the Max-
well’s model. On the surface of the non-Newtonian fluids,
the bulk shear mode is expected to show oscillatory time
dependence �4�. From the frequency and the damping rate of
the bulk shear mode, it may be possible to obtain viscoelastic
properties of the non-Newtonian fluids.

IV. CONCLUSION

In the present work, we indicated that the autocorrelation
function of the CW displacement is expressed by the sum of
the ordinary oscillator and the bulk-shear-mode terms. The
former is expressed by a simple damped oscillator form or a
sum of exponentially damping functions depending on the
extent of damping. The latter is also written by a superposi-
tion of exponentially damping modes, and an analytically
exact formula is obtained. We compared the theoretical ex-
pression with the SDLS experimental data obtained on the
surface of an IL, �bmim��TFSI�. We confirmed that the ex-
perimental data is well explained by the theoretical autocor-
relation function. Especially, the bulk-shear-mode contribu-
tion is observed for the first time.

It is expected that this functional form of the autocorrela-
tion function can be used for precise determination of the
liquid parameters such as the surface tension 	 and the vis-
cosity � by curve fitting in the time domain.
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APPENDIX: DERIVATION OF BULK-SHEAR-MODE
CORRELATION FUNCTION [EQ. (20)]

In this appendix, we explain the derivation of analytic
form of bulk shear mode correlation function �20� from in-
tegral �19�.

We start from the fact that the denominator of g��̃� can be
factorized as ��1− �̃�2+ ỹ�2+ �2�̃−1�=�i=0

3 ��̃−�i�. Here, �̃i
�i=0�3� are the roots of the equation ��1− �̃�2+ ỹ�2+ �2�̃

−1�=0. Two of the four roots, �̃0 and �̃1, are obtained from
the roots of dispersion relation �10�, �̃0 and �̃1 as

�̃0 = − i�̃0, �A1a�

�̃1 = − i�̃1. �A1b�

Other two roots �̃2 and �̃3 are calculated from �̃0 and �̃1 by

�̃2,�̃3 = − � �̃0 + �̃1

2
− 2� �� �̃0 + �̃1

2
− 2�2

−
ỹ�ỹ + 2�

�̃0�̃1

.

�A1c�

Using this factorization, the integration in Eq. �19� can be
executed in the following way:

Fbulk�q,t� = −
F0ỹ

�
�

1/2

� d�̃e−�̃t̃�2�̃ − 1

�̃�i=0

3
��̃ − �̃i�

= −
F0ỹ

�
�
i=0

3

ai�
1/2

� d�̃e−�̃t̃�2�̃ − 1

�̃��̃ − �̃i�
= − F0ỹ�

i=0

3
ai

�̃i
�erfc�� t̃

2
�

− �1 − 2�̃ie
−�̃it̃ erfc�� t̃

2
�1 − 2�̃i��� . �A2�

Here, erfc�x� is the Gauss’s error function

erfc�x� =
2

��
�

x

�

e−t2dt ,

and the coefficients ai �i=0�3� are defined by

ai = �
j�i

1

�̃i − �̃ j

, �A3�

which satisfy the identity �i=0
3 ai� j�i��̃− �̃ j�=1.
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